3.1.35 \(\int \frac {(e \cot (c+d x))^{5/2}}{(a+a \cot (c+d x))^3} \, dx\) [35]

3.1.35.1 Optimal result
3.1.35.2 Mathematica [C] (verified)
3.1.35.3 Rubi [A] (warning: unable to verify)
3.1.35.4 Maple [B] (verified)
3.1.35.5 Fricas [A] (verification not implemented)
3.1.35.6 Sympy [F]
3.1.35.7 Maxima [F(-2)]
3.1.35.8 Giac [F]
3.1.35.9 Mupad [B] (verification not implemented)

3.1.35.1 Optimal result

Integrand size = 25, antiderivative size = 164 \[ \int \frac {(e \cot (c+d x))^{5/2}}{(a+a \cot (c+d x))^3} \, dx=-\frac {e^{5/2} \arctan \left (\frac {\sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{8 a^3 d}+\frac {e^{5/2} \text {arctanh}\left (\frac {\sqrt {e}+\sqrt {e} \cot (c+d x)}{\sqrt {2} \sqrt {e \cot (c+d x)}}\right )}{2 \sqrt {2} a^3 d}-\frac {5 e^2 \sqrt {e \cot (c+d x)}}{8 a^3 d (1+\cot (c+d x))}+\frac {e^2 \sqrt {e \cot (c+d x)}}{4 a d (a+a \cot (c+d x))^2} \]

output
-1/8*e^(5/2)*arctan((e*cot(d*x+c))^(1/2)/e^(1/2))/a^3/d+1/4*e^(5/2)*arctan 
h(1/2*(e^(1/2)+cot(d*x+c)*e^(1/2))*2^(1/2)/(e*cot(d*x+c))^(1/2))/a^3/d*2^( 
1/2)-5/8*e^2*(e*cot(d*x+c))^(1/2)/a^3/d/(1+cot(d*x+c))+1/4*e^2*(e*cot(d*x+ 
c))^(1/2)/a/d/(a+a*cot(d*x+c))^2
 
3.1.35.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 3.68 (sec) , antiderivative size = 390, normalized size of antiderivative = 2.38 \[ \int \frac {(e \cot (c+d x))^{5/2}}{(a+a \cot (c+d x))^3} \, dx=\frac {e \left (-48 \cot ^2(c+d x) (e \cot (c+d x))^{3/2} \operatorname {Hypergeometric2F1}\left (2,\frac {7}{2},\frac {9}{2},-\cot (c+d x)\right )-48 \cot ^2(c+d x) (e \cot (c+d x))^{3/2} \operatorname {Hypergeometric2F1}\left (3,\frac {7}{2},\frac {9}{2},-\cot (c+d x)\right )+7 \left (24 e^{3/2} \arctan \left (\frac {\sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )+12 \left (-e^2\right )^{3/4} \arctan \left (\frac {\sqrt {e \cot (c+d x)}}{\sqrt [4]{-e^2}}\right )-6 \sqrt {2} e^{3/2} \arctan \left (1-\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )+6 \sqrt {2} e^{3/2} \arctan \left (1+\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )-12 \left (-e^2\right )^{3/4} \text {arctanh}\left (\frac {\sqrt {e \cot (c+d x)}}{\sqrt [4]{-e^2}}\right )-48 e \sqrt {e \cot (c+d x)}+16 (e \cot (c+d x))^{3/2}-3 \sqrt {2} e^{3/2} \log \left (\sqrt {e}+\sqrt {e} \cot (c+d x)-\sqrt {2} \sqrt {e \cot (c+d x)}\right )+3 \sqrt {2} e^{3/2} \log \left (\sqrt {e}+\sqrt {e} \cot (c+d x)+\sqrt {2} \sqrt {e \cot (c+d x)}\right )\right )\right )}{336 a^3 d} \]

input
Integrate[(e*Cot[c + d*x])^(5/2)/(a + a*Cot[c + d*x])^3,x]
 
output
(e*(-48*Cot[c + d*x]^2*(e*Cot[c + d*x])^(3/2)*Hypergeometric2F1[2, 7/2, 9/ 
2, -Cot[c + d*x]] - 48*Cot[c + d*x]^2*(e*Cot[c + d*x])^(3/2)*Hypergeometri 
c2F1[3, 7/2, 9/2, -Cot[c + d*x]] + 7*(24*e^(3/2)*ArcTan[Sqrt[e*Cot[c + d*x 
]]/Sqrt[e]] + 12*(-e^2)^(3/4)*ArcTan[Sqrt[e*Cot[c + d*x]]/(-e^2)^(1/4)] - 
6*Sqrt[2]*e^(3/2)*ArcTan[1 - (Sqrt[2]*Sqrt[e*Cot[c + d*x]])/Sqrt[e]] + 6*S 
qrt[2]*e^(3/2)*ArcTan[1 + (Sqrt[2]*Sqrt[e*Cot[c + d*x]])/Sqrt[e]] - 12*(-e 
^2)^(3/4)*ArcTanh[Sqrt[e*Cot[c + d*x]]/(-e^2)^(1/4)] - 48*e*Sqrt[e*Cot[c + 
 d*x]] + 16*(e*Cot[c + d*x])^(3/2) - 3*Sqrt[2]*e^(3/2)*Log[Sqrt[e] + Sqrt[ 
e]*Cot[c + d*x] - Sqrt[2]*Sqrt[e*Cot[c + d*x]]] + 3*Sqrt[2]*e^(3/2)*Log[Sq 
rt[e] + Sqrt[e]*Cot[c + d*x] + Sqrt[2]*Sqrt[e*Cot[c + d*x]]])))/(336*a^3*d 
)
 
3.1.35.3 Rubi [A] (warning: unable to verify)

Time = 1.25 (sec) , antiderivative size = 179, normalized size of antiderivative = 1.09, number of steps used = 16, number of rules used = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.600, Rules used = {3042, 4048, 27, 3042, 4132, 3042, 4137, 27, 3042, 4015, 221, 4117, 27, 73, 216}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(e \cot (c+d x))^{5/2}}{(a \cot (c+d x)+a)^3} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (-e \tan \left (c+d x+\frac {\pi }{2}\right )\right )^{5/2}}{\left (a-a \tan \left (c+d x+\frac {\pi }{2}\right )\right )^3}dx\)

\(\Big \downarrow \) 4048

\(\displaystyle \frac {e^2 \sqrt {e \cot (c+d x)}}{4 a d (a \cot (c+d x)+a)^2}-\frac {\int -\frac {a^2 e^3+5 a^2 \cot ^2(c+d x) e^3-4 a^2 \cot (c+d x) e^3}{2 \sqrt {e \cot (c+d x)} (\cot (c+d x) a+a)^2}dx}{4 a^3}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {a^2 e^3+5 a^2 \cot ^2(c+d x) e^3-4 a^2 \cot (c+d x) e^3}{\sqrt {e \cot (c+d x)} (\cot (c+d x) a+a)^2}dx}{8 a^3}+\frac {e^2 \sqrt {e \cot (c+d x)}}{4 a d (a \cot (c+d x)+a)^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {a^2 e^3+5 a^2 \tan \left (c+d x+\frac {\pi }{2}\right )^2 e^3+4 a^2 \tan \left (c+d x+\frac {\pi }{2}\right ) e^3}{\sqrt {-e \tan \left (c+d x+\frac {\pi }{2}\right )} \left (a-a \tan \left (c+d x+\frac {\pi }{2}\right )\right )^2}dx}{8 a^3}+\frac {e^2 \sqrt {e \cot (c+d x)}}{4 a d (a \cot (c+d x)+a)^2}\)

\(\Big \downarrow \) 4132

\(\displaystyle \frac {-\frac {\int \frac {3 a^4 e^4-5 a^4 e^4 \cot ^2(c+d x)}{\sqrt {e \cot (c+d x)} (\cot (c+d x) a+a)}dx}{2 a^3 e}-\frac {5 e^2 \sqrt {e \cot (c+d x)}}{d (\cot (c+d x)+1)}}{8 a^3}+\frac {e^2 \sqrt {e \cot (c+d x)}}{4 a d (a \cot (c+d x)+a)^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {-\frac {\int \frac {3 a^4 e^4-5 a^4 e^4 \tan \left (c+d x+\frac {\pi }{2}\right )^2}{\sqrt {-e \tan \left (c+d x+\frac {\pi }{2}\right )} \left (a-a \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{2 a^3 e}-\frac {5 e^2 \sqrt {e \cot (c+d x)}}{d (\cot (c+d x)+1)}}{8 a^3}+\frac {e^2 \sqrt {e \cot (c+d x)}}{4 a d (a \cot (c+d x)+a)^2}\)

\(\Big \downarrow \) 4137

\(\displaystyle \frac {-\frac {\frac {\int \frac {8 \left (a^5 e^4-a^5 e^4 \cot (c+d x)\right )}{\sqrt {e \cot (c+d x)}}dx}{2 a^2}-a^4 e^4 \int \frac {\cot ^2(c+d x)+1}{\sqrt {e \cot (c+d x)} (\cot (c+d x) a+a)}dx}{2 a^3 e}-\frac {5 e^2 \sqrt {e \cot (c+d x)}}{d (\cot (c+d x)+1)}}{8 a^3}+\frac {e^2 \sqrt {e \cot (c+d x)}}{4 a d (a \cot (c+d x)+a)^2}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {-\frac {\frac {4 \int \frac {a^5 e^4-a^5 e^4 \cot (c+d x)}{\sqrt {e \cot (c+d x)}}dx}{a^2}-a^4 e^4 \int \frac {\cot ^2(c+d x)+1}{\sqrt {e \cot (c+d x)} (\cot (c+d x) a+a)}dx}{2 a^3 e}-\frac {5 e^2 \sqrt {e \cot (c+d x)}}{d (\cot (c+d x)+1)}}{8 a^3}+\frac {e^2 \sqrt {e \cot (c+d x)}}{4 a d (a \cot (c+d x)+a)^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {-\frac {\frac {4 \int \frac {e^4 a^5+e^4 \tan \left (c+d x+\frac {\pi }{2}\right ) a^5}{\sqrt {-e \tan \left (c+d x+\frac {\pi }{2}\right )}}dx}{a^2}-a^4 e^4 \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-e \tan \left (c+d x+\frac {\pi }{2}\right )} \left (a-a \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{2 a^3 e}-\frac {5 e^2 \sqrt {e \cot (c+d x)}}{d (\cot (c+d x)+1)}}{8 a^3}+\frac {e^2 \sqrt {e \cot (c+d x)}}{4 a d (a \cot (c+d x)+a)^2}\)

\(\Big \downarrow \) 4015

\(\displaystyle \frac {-\frac {-a^4 e^4 \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-e \tan \left (c+d x+\frac {\pi }{2}\right )} \left (a-a \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx-\frac {8 a^8 e^8 \int \frac {1}{2 a^{10} e^8-\left (e^4 a^5+e^4 \cot (c+d x) a^5\right )^2 \tan (c+d x)}d\frac {e^4 a^5+e^4 \cot (c+d x) a^5}{\sqrt {e \cot (c+d x)}}}{d}}{2 a^3 e}-\frac {5 e^2 \sqrt {e \cot (c+d x)}}{d (\cot (c+d x)+1)}}{8 a^3}+\frac {e^2 \sqrt {e \cot (c+d x)}}{4 a d (a \cot (c+d x)+a)^2}\)

\(\Big \downarrow \) 221

\(\displaystyle \frac {-\frac {-a^4 e^4 \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-e \tan \left (c+d x+\frac {\pi }{2}\right )} \left (a-a \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx-\frac {4 \sqrt {2} a^3 e^{7/2} \text {arctanh}\left (\frac {a^5 e^4 \cot (c+d x)+a^5 e^4}{\sqrt {2} a^5 e^{7/2} \sqrt {e \cot (c+d x)}}\right )}{d}}{2 a^3 e}-\frac {5 e^2 \sqrt {e \cot (c+d x)}}{d (\cot (c+d x)+1)}}{8 a^3}+\frac {e^2 \sqrt {e \cot (c+d x)}}{4 a d (a \cot (c+d x)+a)^2}\)

\(\Big \downarrow \) 4117

\(\displaystyle \frac {-\frac {-\frac {a^4 e^4 \int \frac {1}{a \sqrt {e \cot (c+d x)} (\cot (c+d x)+1)}d(-\cot (c+d x))}{d}-\frac {4 \sqrt {2} a^3 e^{7/2} \text {arctanh}\left (\frac {a^5 e^4 \cot (c+d x)+a^5 e^4}{\sqrt {2} a^5 e^{7/2} \sqrt {e \cot (c+d x)}}\right )}{d}}{2 a^3 e}-\frac {5 e^2 \sqrt {e \cot (c+d x)}}{d (\cot (c+d x)+1)}}{8 a^3}+\frac {e^2 \sqrt {e \cot (c+d x)}}{4 a d (a \cot (c+d x)+a)^2}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {-\frac {-\frac {a^3 e^4 \int \frac {1}{\sqrt {e \cot (c+d x)} (\cot (c+d x)+1)}d(-\cot (c+d x))}{d}-\frac {4 \sqrt {2} a^3 e^{7/2} \text {arctanh}\left (\frac {a^5 e^4 \cot (c+d x)+a^5 e^4}{\sqrt {2} a^5 e^{7/2} \sqrt {e \cot (c+d x)}}\right )}{d}}{2 a^3 e}-\frac {5 e^2 \sqrt {e \cot (c+d x)}}{d (\cot (c+d x)+1)}}{8 a^3}+\frac {e^2 \sqrt {e \cot (c+d x)}}{4 a d (a \cot (c+d x)+a)^2}\)

\(\Big \downarrow \) 73

\(\displaystyle \frac {-\frac {\frac {2 a^3 e^3 \int \frac {1}{\frac {\cot ^2(c+d x)}{e}+1}d\sqrt {e \cot (c+d x)}}{d}-\frac {4 \sqrt {2} a^3 e^{7/2} \text {arctanh}\left (\frac {a^5 e^4 \cot (c+d x)+a^5 e^4}{\sqrt {2} a^5 e^{7/2} \sqrt {e \cot (c+d x)}}\right )}{d}}{2 a^3 e}-\frac {5 e^2 \sqrt {e \cot (c+d x)}}{d (\cot (c+d x)+1)}}{8 a^3}+\frac {e^2 \sqrt {e \cot (c+d x)}}{4 a d (a \cot (c+d x)+a)^2}\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {-\frac {-\frac {2 a^3 e^{7/2} \arctan \left (\frac {\cot (c+d x)}{\sqrt {e}}\right )}{d}-\frac {4 \sqrt {2} a^3 e^{7/2} \text {arctanh}\left (\frac {a^5 e^4 \cot (c+d x)+a^5 e^4}{\sqrt {2} a^5 e^{7/2} \sqrt {e \cot (c+d x)}}\right )}{d}}{2 a^3 e}-\frac {5 e^2 \sqrt {e \cot (c+d x)}}{d (\cot (c+d x)+1)}}{8 a^3}+\frac {e^2 \sqrt {e \cot (c+d x)}}{4 a d (a \cot (c+d x)+a)^2}\)

input
Int[(e*Cot[c + d*x])^(5/2)/(a + a*Cot[c + d*x])^3,x]
 
output
(e^2*Sqrt[e*Cot[c + d*x]])/(4*a*d*(a + a*Cot[c + d*x])^2) + (-1/2*((-2*a^3 
*e^(7/2)*ArcTan[Cot[c + d*x]/Sqrt[e]])/d - (4*Sqrt[2]*a^3*e^(7/2)*ArcTanh[ 
(a^5*e^4 + a^5*e^4*Cot[c + d*x])/(Sqrt[2]*a^5*e^(7/2)*Sqrt[e*Cot[c + d*x]] 
)])/d)/(a^3*e) - (5*e^2*Sqrt[e*Cot[c + d*x]])/(d*(1 + Cot[c + d*x])))/(8*a 
^3)
 

3.1.35.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4015
Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_ 
)]], x_Symbol] :> Simp[-2*(d^2/f)   Subst[Int[1/(2*c*d + b*x^2), x], x, (c 
- d*Tan[e + f*x])/Sqrt[b*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x] && 
 EqQ[c^2 - d^2, 0]
 

rule 4048
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
 (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*c - a*d)^2*(a + b*Tan[e + f*x])^(m 
 - 2)*((c + d*Tan[e + f*x])^(n + 1)/(d*f*(n + 1)*(c^2 + d^2))), x] - Simp[1 
/(d*(n + 1)*(c^2 + d^2))   Int[(a + b*Tan[e + f*x])^(m - 3)*(c + d*Tan[e + 
f*x])^(n + 1)*Simp[a^2*d*(b*d*(m - 2) - a*c*(n + 1)) + b*(b*c - 2*a*d)*(b*c 
*(m - 2) + a*d*(n + 1)) - d*(n + 1)*(3*a^2*b*c - b^3*c - a^3*d + 3*a*b^2*d) 
*Tan[e + f*x] - b*(a*d*(2*b*c - a*d)*(m + n - 1) - b^2*(c^2*(m - 2) - d^2*( 
n + 1)))*Tan[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[ 
b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && GtQ[m, 2] && LtQ 
[n, -1] && IntegerQ[2*m]
 

rule 4117
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*tan[(e_.) 
+ (f_.)*(x_)])^(n_.)*((A_) + (C_.)*tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> 
 Simp[A/f   Subst[Int[(a + b*x)^m*(c + d*x)^n, x], x, Tan[e + f*x]], x] /; 
FreeQ[{a, b, c, d, e, f, A, C, m, n}, x] && EqQ[A, C]
 

rule 4132
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
 (f_.)*(x_)])^(n_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) 
 + (f_.)*(x_)]^2), x_Symbol] :> Simp[(A*b^2 - a*(b*B - a*C))*(a + b*Tan[e + 
 f*x])^(m + 1)*((c + d*Tan[e + f*x])^(n + 1)/(f*(m + 1)*(b*c - a*d)*(a^2 + 
b^2))), x] + Simp[1/((m + 1)*(b*c - a*d)*(a^2 + b^2))   Int[(a + b*Tan[e + 
f*x])^(m + 1)*(c + d*Tan[e + f*x])^n*Simp[A*(a*(b*c - a*d)*(m + 1) - b^2*d* 
(m + n + 2)) + (b*B - a*C)*(b*c*(m + 1) + a*d*(n + 1)) - (m + 1)*(b*c - a*d 
)*(A*b - a*B - b*C)*Tan[e + f*x] - d*(A*b^2 - a*(b*B - a*C))*(m + n + 2)*Ta 
n[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, n}, x] && NeQ 
[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && LtQ[m, -1] && 
!(ILtQ[n, -1] && ( !IntegerQ[m] || (EqQ[c, 0] && NeQ[a, 0])))
 

rule 4137
Int[(((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (C_.)*tan[(e_.) 
+ (f_.)*(x_)]^2))/((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Sim 
p[1/(a^2 + b^2)   Int[(c + d*Tan[e + f*x])^n*Simp[a*(A - C) - (A*b - b*C)*T 
an[e + f*x], x], x], x] + Simp[(A*b^2 + a^2*C)/(a^2 + b^2)   Int[(c + d*Tan 
[e + f*x])^n*((1 + Tan[e + f*x]^2)/(a + b*Tan[e + f*x])), x], x] /; FreeQ[{ 
a, b, c, d, e, f, A, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && 
 NeQ[c^2 + d^2, 0] &&  !GtQ[n, 0] &&  !LeQ[n, -1]
 
3.1.35.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(348\) vs. \(2(135)=270\).

Time = 1.23 (sec) , antiderivative size = 349, normalized size of antiderivative = 2.13

method result size
derivativedivides \(-\frac {2 e^{4} \left (\frac {-\frac {\left (e^{2}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {e \cot \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \cot \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{8 e}+\frac {\sqrt {2}\, \left (\ln \left (\frac {e \cot \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \cot \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{8 \left (e^{2}\right )^{\frac {1}{4}}}}{4 e}+\frac {\frac {\frac {5 \left (e \cot \left (d x +c \right )\right )^{\frac {3}{2}}}{4}+\frac {3 e \sqrt {e \cot \left (d x +c \right )}}{4}}{\left (e \cot \left (d x +c \right )+e \right )^{2}}+\frac {\arctan \left (\frac {\sqrt {e \cot \left (d x +c \right )}}{\sqrt {e}}\right )}{4 \sqrt {e}}}{4 e}\right )}{d \,a^{3}}\) \(349\)
default \(-\frac {2 e^{4} \left (\frac {-\frac {\left (e^{2}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {e \cot \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \cot \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{8 e}+\frac {\sqrt {2}\, \left (\ln \left (\frac {e \cot \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \cot \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{8 \left (e^{2}\right )^{\frac {1}{4}}}}{4 e}+\frac {\frac {\frac {5 \left (e \cot \left (d x +c \right )\right )^{\frac {3}{2}}}{4}+\frac {3 e \sqrt {e \cot \left (d x +c \right )}}{4}}{\left (e \cot \left (d x +c \right )+e \right )^{2}}+\frac {\arctan \left (\frac {\sqrt {e \cot \left (d x +c \right )}}{\sqrt {e}}\right )}{4 \sqrt {e}}}{4 e}\right )}{d \,a^{3}}\) \(349\)

input
int((e*cot(d*x+c))^(5/2)/(a+a*cot(d*x+c))^3,x,method=_RETURNVERBOSE)
 
output
-2/d/a^3*e^4*(1/4/e*(-1/8/e*(e^2)^(1/4)*2^(1/2)*(ln((e*cot(d*x+c)+(e^2)^(1 
/4)*(e*cot(d*x+c))^(1/2)*2^(1/2)+(e^2)^(1/2))/(e*cot(d*x+c)-(e^2)^(1/4)*(e 
*cot(d*x+c))^(1/2)*2^(1/2)+(e^2)^(1/2)))+2*arctan(2^(1/2)/(e^2)^(1/4)*(e*c 
ot(d*x+c))^(1/2)+1)-2*arctan(-2^(1/2)/(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)+1)) 
+1/8/(e^2)^(1/4)*2^(1/2)*(ln((e*cot(d*x+c)-(e^2)^(1/4)*(e*cot(d*x+c))^(1/2 
)*2^(1/2)+(e^2)^(1/2))/(e*cot(d*x+c)+(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)*2^(1 
/2)+(e^2)^(1/2)))+2*arctan(2^(1/2)/(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)+1)-2*a 
rctan(-2^(1/2)/(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)+1)))+1/4/e*((5/4*(e*cot(d* 
x+c))^(3/2)+3/4*e*(e*cot(d*x+c))^(1/2))/(e*cot(d*x+c)+e)^2+1/4/e^(1/2)*arc 
tan((e*cot(d*x+c))^(1/2)/e^(1/2))))
 
3.1.35.5 Fricas [A] (verification not implemented)

Time = 0.29 (sec) , antiderivative size = 567, normalized size of antiderivative = 3.46 \[ \int \frac {(e \cot (c+d x))^{5/2}}{(a+a \cot (c+d x))^3} \, dx=\left [-\frac {4 \, {\left (\sqrt {2} e^{2} \sin \left (2 \, d x + 2 \, c\right ) + \sqrt {2} e^{2}\right )} \sqrt {-e} \arctan \left (\frac {{\left (\sqrt {2} \cos \left (2 \, d x + 2 \, c\right ) + \sqrt {2} \sin \left (2 \, d x + 2 \, c\right ) + \sqrt {2}\right )} \sqrt {-e} \sqrt {\frac {e \cos \left (2 \, d x + 2 \, c\right ) + e}{\sin \left (2 \, d x + 2 \, c\right )}}}{2 \, {\left (e \cos \left (2 \, d x + 2 \, c\right ) + e\right )}}\right ) - {\left (e^{2} \sin \left (2 \, d x + 2 \, c\right ) + e^{2}\right )} \sqrt {-e} \log \left (\frac {e \cos \left (2 \, d x + 2 \, c\right ) - e \sin \left (2 \, d x + 2 \, c\right ) - 2 \, \sqrt {-e} \sqrt {\frac {e \cos \left (2 \, d x + 2 \, c\right ) + e}{\sin \left (2 \, d x + 2 \, c\right )}} \sin \left (2 \, d x + 2 \, c\right ) + e}{\cos \left (2 \, d x + 2 \, c\right ) + \sin \left (2 \, d x + 2 \, c\right ) + 1}\right ) - {\left (3 \, e^{2} \cos \left (2 \, d x + 2 \, c\right ) - 5 \, e^{2} \sin \left (2 \, d x + 2 \, c\right ) - 3 \, e^{2}\right )} \sqrt {\frac {e \cos \left (2 \, d x + 2 \, c\right ) + e}{\sin \left (2 \, d x + 2 \, c\right )}}}{16 \, {\left (a^{3} d \sin \left (2 \, d x + 2 \, c\right ) + a^{3} d\right )}}, -\frac {2 \, {\left (e^{2} \sin \left (2 \, d x + 2 \, c\right ) + e^{2}\right )} \sqrt {e} \arctan \left (\frac {\sqrt {\frac {e \cos \left (2 \, d x + 2 \, c\right ) + e}{\sin \left (2 \, d x + 2 \, c\right )}}}{\sqrt {e}}\right ) - 2 \, {\left (\sqrt {2} e^{2} \sin \left (2 \, d x + 2 \, c\right ) + \sqrt {2} e^{2}\right )} \sqrt {e} \log \left (-{\left (\sqrt {2} \cos \left (2 \, d x + 2 \, c\right ) - \sqrt {2} \sin \left (2 \, d x + 2 \, c\right ) - \sqrt {2}\right )} \sqrt {e} \sqrt {\frac {e \cos \left (2 \, d x + 2 \, c\right ) + e}{\sin \left (2 \, d x + 2 \, c\right )}} + 2 \, e \sin \left (2 \, d x + 2 \, c\right ) + e\right ) - {\left (3 \, e^{2} \cos \left (2 \, d x + 2 \, c\right ) - 5 \, e^{2} \sin \left (2 \, d x + 2 \, c\right ) - 3 \, e^{2}\right )} \sqrt {\frac {e \cos \left (2 \, d x + 2 \, c\right ) + e}{\sin \left (2 \, d x + 2 \, c\right )}}}{16 \, {\left (a^{3} d \sin \left (2 \, d x + 2 \, c\right ) + a^{3} d\right )}}\right ] \]

input
integrate((e*cot(d*x+c))^(5/2)/(a+a*cot(d*x+c))^3,x, algorithm="fricas")
 
output
[-1/16*(4*(sqrt(2)*e^2*sin(2*d*x + 2*c) + sqrt(2)*e^2)*sqrt(-e)*arctan(1/2 
*(sqrt(2)*cos(2*d*x + 2*c) + sqrt(2)*sin(2*d*x + 2*c) + sqrt(2))*sqrt(-e)* 
sqrt((e*cos(2*d*x + 2*c) + e)/sin(2*d*x + 2*c))/(e*cos(2*d*x + 2*c) + e)) 
- (e^2*sin(2*d*x + 2*c) + e^2)*sqrt(-e)*log((e*cos(2*d*x + 2*c) - e*sin(2* 
d*x + 2*c) - 2*sqrt(-e)*sqrt((e*cos(2*d*x + 2*c) + e)/sin(2*d*x + 2*c))*si 
n(2*d*x + 2*c) + e)/(cos(2*d*x + 2*c) + sin(2*d*x + 2*c) + 1)) - (3*e^2*co 
s(2*d*x + 2*c) - 5*e^2*sin(2*d*x + 2*c) - 3*e^2)*sqrt((e*cos(2*d*x + 2*c) 
+ e)/sin(2*d*x + 2*c)))/(a^3*d*sin(2*d*x + 2*c) + a^3*d), -1/16*(2*(e^2*si 
n(2*d*x + 2*c) + e^2)*sqrt(e)*arctan(sqrt((e*cos(2*d*x + 2*c) + e)/sin(2*d 
*x + 2*c))/sqrt(e)) - 2*(sqrt(2)*e^2*sin(2*d*x + 2*c) + sqrt(2)*e^2)*sqrt( 
e)*log(-(sqrt(2)*cos(2*d*x + 2*c) - sqrt(2)*sin(2*d*x + 2*c) - sqrt(2))*sq 
rt(e)*sqrt((e*cos(2*d*x + 2*c) + e)/sin(2*d*x + 2*c)) + 2*e*sin(2*d*x + 2* 
c) + e) - (3*e^2*cos(2*d*x + 2*c) - 5*e^2*sin(2*d*x + 2*c) - 3*e^2)*sqrt(( 
e*cos(2*d*x + 2*c) + e)/sin(2*d*x + 2*c)))/(a^3*d*sin(2*d*x + 2*c) + a^3*d 
)]
 
3.1.35.6 Sympy [F]

\[ \int \frac {(e \cot (c+d x))^{5/2}}{(a+a \cot (c+d x))^3} \, dx=\frac {\int \frac {\left (e \cot {\left (c + d x \right )}\right )^{\frac {5}{2}}}{\cot ^{3}{\left (c + d x \right )} + 3 \cot ^{2}{\left (c + d x \right )} + 3 \cot {\left (c + d x \right )} + 1}\, dx}{a^{3}} \]

input
integrate((e*cot(d*x+c))**(5/2)/(a+a*cot(d*x+c))**3,x)
 
output
Integral((e*cot(c + d*x))**(5/2)/(cot(c + d*x)**3 + 3*cot(c + d*x)**2 + 3* 
cot(c + d*x) + 1), x)/a**3
 
3.1.35.7 Maxima [F(-2)]

Exception generated. \[ \int \frac {(e \cot (c+d x))^{5/2}}{(a+a \cot (c+d x))^3} \, dx=\text {Exception raised: ValueError} \]

input
integrate((e*cot(d*x+c))^(5/2)/(a+a*cot(d*x+c))^3,x, algorithm="maxima")
 
output
Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(e>0)', see `assume?` for more de 
tails)Is e
 
3.1.35.8 Giac [F]

\[ \int \frac {(e \cot (c+d x))^{5/2}}{(a+a \cot (c+d x))^3} \, dx=\int { \frac {\left (e \cot \left (d x + c\right )\right )^{\frac {5}{2}}}{{\left (a \cot \left (d x + c\right ) + a\right )}^{3}} \,d x } \]

input
integrate((e*cot(d*x+c))^(5/2)/(a+a*cot(d*x+c))^3,x, algorithm="giac")
 
output
integrate((e*cot(d*x + c))^(5/2)/(a*cot(d*x + c) + a)^3, x)
 
3.1.35.9 Mupad [B] (verification not implemented)

Time = 13.53 (sec) , antiderivative size = 154, normalized size of antiderivative = 0.94 \[ \int \frac {(e \cot (c+d x))^{5/2}}{(a+a \cot (c+d x))^3} \, dx=\frac {\sqrt {2}\,e^{5/2}\,\mathrm {atanh}\left (\frac {9\,\sqrt {2}\,e^{33/2}\,\sqrt {e\,\mathrm {cot}\left (c+d\,x\right )}}{32\,\left (\frac {9\,e^{17}\,\mathrm {cot}\left (c+d\,x\right )}{32}+\frac {9\,e^{17}}{32}\right )}\right )}{4\,a^3\,d}-\frac {e^{5/2}\,\mathrm {atan}\left (\frac {\sqrt {e\,\mathrm {cot}\left (c+d\,x\right )}}{\sqrt {e}}\right )}{8\,a^3\,d}-\frac {\frac {3\,e^4\,\sqrt {e\,\mathrm {cot}\left (c+d\,x\right )}}{8}+\frac {5\,e^3\,{\left (e\,\mathrm {cot}\left (c+d\,x\right )\right )}^{3/2}}{8}}{d\,a^3\,e^2\,{\mathrm {cot}\left (c+d\,x\right )}^2+2\,d\,a^3\,e^2\,\mathrm {cot}\left (c+d\,x\right )+d\,a^3\,e^2} \]

input
int((e*cot(c + d*x))^(5/2)/(a + a*cot(c + d*x))^3,x)
 
output
(2^(1/2)*e^(5/2)*atanh((9*2^(1/2)*e^(33/2)*(e*cot(c + d*x))^(1/2))/(32*((9 
*e^17*cot(c + d*x))/32 + (9*e^17)/32))))/(4*a^3*d) - (e^(5/2)*atan((e*cot( 
c + d*x))^(1/2)/e^(1/2)))/(8*a^3*d) - ((3*e^4*(e*cot(c + d*x))^(1/2))/8 + 
(5*e^3*(e*cot(c + d*x))^(3/2))/8)/(a^3*d*e^2 + a^3*d*e^2*cot(c + d*x)^2 + 
2*a^3*d*e^2*cot(c + d*x))